液下单滴微萃取 - 高效液相色谱法 测定果汁中苯甲酰脲农药残留

周建科,刘瑞英,宋 歌,张明翠

(河北大学理化分析中心,河北省分析科学技术重点实验室,保定 071002)

摘要:建立了液下单液滴微萃取-高效液相色谱法测定葡萄果汁中 3 种苯甲酰脲农药残留的方法。Diamonsil C₁₈(5 µm, 250 mm 4.6 mm)分离柱,甲醇-水(体积比 85:15)流动相,流速 1.0 mL/min,室温,紫外检测波长 254 nm。最佳萃取条件为:室温,1.5 µL 的三氯甲烷液滴为萃取剂,转速 240 r/min, pH3, NaCl 含量 40 g/L,时间 10 min。除虫脲、氟铃脲和氟苯脲在 0.01~10.0 mg/L 范围内均有良好线性,检出限分别为 0.005、0.01、0.01 mg/L,添加回收率在 80.84%~92.86%之间,相对标准偏差(RSD)为 2.04%~3.11%。

关键词:除虫脲;氟苯脲;氟铃脲;高效液相色谱;单液滴微萃取 中图分类号:TS 207.5⁺3 文献标志码:A 文章编号:1005-9989(2009)08-0290-04

Determination of benzoyluea insecticides residues in grape juice drink by direct single-drop microextraction-high performance liquid chromatography

ZHOU Jian-ke, LIU Rui-ying, SONG Ge, ZHANG Ming-cui

(Research Center of Physics and Chemistry Analysis, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002)

Abstract: A simple and efficient direct single-drop microextraction(SDME) in conjunction with high performance liquid chromatography (HPLC) has been developed for extraction and determination of 3 benzoylurea insecticides residues from grape juice drink samples. The components were separated by a Diamonsil C₁₈(5 μ m, 250 mm 4.6 mm). Mobile phase was a mixture of methanol and water (the ratio of volume was 85:15). Factors relevant to the extraction efficiency were studied and optimized. Under the optimized extraction conditions(extraction solvent: trichloromethane, extraction temperature: room tem-perature, sodium chloride concentration: 40 g/L, pH3, microdrop and sample volumes: 1.5 μ L and 5 mL respectively, the stirring rate: 240 r/min and the extraction time: 10 min), the results were pleasant. The methodology exhibited good linearity between 0.01~10.0 μ g/mL with correlation coefficiency of 0.9995~0.9996. The detection limits of quantification were 0.005~0.01 mg/L. The average recovery of benzoylurea pesticides ranged from 80.84%~ 92.86%. The relative standard deviations(RSDs)(n=6) were 2.04%~3.11%.

Key words: diflubenzuron; hexafluron; teflubenzuron; high performance liquid chromatography; single-drop microextraction

作者简介: 周建科(1956—), 男, 河北辛集人, 研究员, 主要从事色谱分离研究。

·290·

收稿日期: 2008-10-12

脲类农药主要是通过抑制昆虫蜕皮、变态, 导致不育及直接杀卵等方面的作用^[1]来控制害虫, 所以其对人畜毒性相对较低,因而在粮食、蔬菜、 水果上得到广泛的应用,但其残留对人体有潜在 危险。我国规定这类农药在蔬菜和水果中的最大 允许残留量在 0.5~3.0 mg/kg 之间。除虫脲、氟铃 脲和氟苯脲的高效液相色谱法测定已有报道^[2-5], 但三者同时检测的报道较少^[6]。

单液滴微萃取(Single-drop Microextracrion, SDME)是 20 世纪 90 年代发展起来的一种新型的样 品前处理技术^[7],与传统液-液萃取相比,该技术 集采样、萃取和浓缩于一体,装置和操作简单, 成本低廉,富集效果好。另外,所需要的有机溶 剂非常少,是一项环境友好的样品前处理技术。 本文考察了液下单液滴微萃取技术富集果汁中苯 甲酰脲农药残留的可行性,结合高效液相色谱法 同时检测了葡萄果汁中除虫脲、氟铃脲和氟苯脲 3 种农药的残留。

1 实验部分

1.1 仪器和试剂

岛津 LC-10AT 高效液相色谱仪,配有岛津 SPD-10A 紫外检测器;7725i 型手动进样阀;N-2000 双通道色谱工作站:浙江大学智能信息工程 研究所;岛津 UV-265 紫外可见分光光度计;HJ-3 数显恒温磁力搅拌器:巩义市予华仪器有限责任 公司。

除虫脲、氟铃脲、氟苯脲:Sigma-Aldrich 公 司;所用水为二次蒸馏水;其余试剂均为分析纯; 葡萄果汁:市售。

标准储备溶液:准确称取 10.0 mg 除虫脲、氟 铃脲、氟苯脲标准品,用甲醇定容至 10 mL,配成 1 mg/mL 的标准储备液。4 ℃冰箱储藏待用。标准 工作溶液:用甲醇逐级稀释标准储备液。

1.2 色谱条件

色谱柱:Diamonsil C₁₈柱(5 μm, 250mm×4.6 mm); 流动相:甲醇-水(体积比为 85:15);检测波长:254 nm;流速:1.0 mL/min;柱温:室温。采用色谱峰 的保留时间定性,外标法峰面积定量。

1.3 样品萃取

自制的单液滴微萃取装置示意图见图 1。

在干燥的小瓶中,加入5mL待测样品(样品用 0.45 μm 微孔滤膜过滤),将吸有一定量萃取剂的 液相微量注射器针头插入液面以下,将萃取剂打

注:1.微量注射器;2.样品溶液;3.有机液滴;4.搅拌磁子;5.磁力 搅拌器。

图 1 单液滴微萃取装置示意图

出,在针尖处形成小液滴,开启搅拌器,进行萃 取富集。萃取结束后,将小液滴抽回,进样分析。

2 结果与讨论

2.1 萃取剂

萃取溶剂决定了分析物预富集的效率,要求 对分析物选择性高,溶解度小,挥发性弱。萃取 剂和样品溶液两相的界面张力、互溶度,萃取剂 的黏度、沸点、饱和蒸气压、化学稳定性和热稳 定性等因素对萃取效果有重要影响。本实验考察 了四氯化碳、氯仿、二氯甲烷、正辛醇、苯、甲 苯、正辛烷、正己烷对3种组分的萃取效果。结 果表明,正己烷、正辛烷萃取效果不好,苯和甲 苯杂质峰太多,四氯化碳和正辛醇在组分出峰处 有干扰,在相同条件下,氯仿萃取效果最好,故 此选择氯仿做萃取剂。

2.2 单液滴体积

液滴体积对分析的灵敏度影响较大。一般接 受相体积越大,对分析物的萃取量越大,方法的 灵敏度越高。但另一方面,由于分析物进入液滴 是扩散过程,随着液滴体积的增大,萃取速率减 小,达到平衡所需时间变长。此外,液滴体积过 大稳定性降低。实验考察了 0.5、1.0、1.5、2.0、 2.5 μL,相同条件下 1.5 μL 有最好的萃取效率和 足够的稳定性,超过 1.5 μL 时液滴容易脱落。

2.3 单液滴浸入液面深度

小液滴在液面下的位置对萃取效率也有影响。 液滴位置过高萃取效率降低,位置过低小液滴在 搅拌状态下稳定性差,易脱落。实验表明,小液 滴距液面的距离大约为 0.5 cm 时,在保证液滴稳 定的情况下萃取效果最佳。

·291·

1 食品安全与检测

2.4 萃取温度

温度对顶空液相微萃取影响较大,一定范围 内,升高样品温度可加快分析物向顶空的转移速 度,从而提高萃取效率。但对于液下单液滴微萃 取影响较小,因为温度增加,分析物向液滴转移 加快的同时,也增加了分析物从液滴重新扩散到 样品溶液中的速度,从而减少萃取量。实验考察 了室温和加热后的萃取效果,表明温度对萃取的 影响不大。因此,我们选择室温作为萃取温度。 2.5 搅拌速度

搅拌可减小分析物在样品中的浓度梯度,缩 短萃取时间,能明显提高萃取效率。且转速越高, 达到平衡的速度越快。但速度增加会影响小液滴 的稳定性。实验对比了不同转速下的萃取效果, 结果表明 240 r/min 效率最佳。如图 2 所示。

2.6 萃取时间

·292

单液滴微萃取实质上也是动态传质平衡过程, 需要一定时间来达到平衡,但时间过长会影响小 液滴的体积和稳定性,而体积又是影响萃取效率 的重要因素。因此,存在一个最佳萃取时间的问 题。实验考察了 5~20 min 的萃取效果,10 min 时 的萃取效果最好,如图 3 所示。

入量不同影响程度不同。盐浓度小时,增大了水 溶液的离子强度,盐析效应有利于脲类农药的析 出,萃取效率也逐渐增大;但 NaCl 浓度继续增大 萃取效率反而降低,是否由于电离效应导致被测 组分存在形式发生变化有待于进一步研究。实验 选用盐加入量为 40 g/L。结果如图 4 所示。

2.8 溶液 pH 值

根据分析物的性质在一定范围内调节样品溶 液的 pH 值将有利于提高萃取效率。由于葡萄果汁 样品中含有柠檬酸、苹果酸等有机酸,本身显酸 性,pH3。本实验在 pH1.0~6.0 范围内考察了萃取 效果,结果表明,降低或增大 pH 值都会减小萃取 效率。如图 5 所示。

2.9 色谱条件的优化

用 UV-265 紫外分光光度计分别对 3 种组分进 行光谱扫描,由光谱图可知除虫脲和氟铃脲在 254 nm 处有强吸收峰;氟苯脲在 260 nm 处有强吸收 峰。故选择 254 nm 为同时检测的波长。在等度洗 脱的条件下,分别考察了不同比例的甲醇-水体系 作为流动相的情况。结果显示当二者体积比为 85: 15 时,峰形和分离效果较好。标准物谱图如图 6 所示。

2.10 线性关系及检出限

采用将标准溶液逐级稀释的方法,配制成一 系列浓度的标准工作液,以峰面积对浓度绘制工 作曲线,3组分的线性方程及相关系数见表1。

表1 线性方程和检出限

组分	线性方程	相关 系数 r	线性范 围/(mg/L)	检出限/ (mg/L)
除虫脲	y=17604.87x+1959.31	0.9996	0.01~10.0	0.005
氟铃脲	y=11626.01x+1333.43	0.9995	0.01~10.0	0.01
氟苯脲	y=9446.05x+769.52	0.9996	0.01~10.0	0.01

2.11 加标回收率与样品测定

移取 5 mL 样品,加入适量标准溶液,按上述 优化条件萃取后进样分析。重复 6 次测定回收率, 结果见表 2。再取 5 mL 样品同样分析,3 种组分 均未检出,样品加标色谱图见图 7。

表 2 平均回收率及 RSD(n=6)

组分	加入量/(mg/L)	测得量/(mg/L)	回收率/%	RSD/%
除虫脲	2.0	1.85	92.86	2.04
氟铃脲	2.0	1.63	80.84	2.77
氟苯脲	2.0	1.67	83.49	3.11

参考文献:

- [1] 严胜骄,林军,毕富春,等.几种新型苯甲酰基脲类化合物 的杀虫活性研究[J].云南大学学报,2003,25(5):438-441
- [2] 胡颖园,黄秀明,成秀娟.除虫脲、吡虫啉悬浮剂的液相色 谱分析[J].农药科学与管理,2003,24(3):11-12
- [3] M Martinez Galera, M D Gil Garcia, R SantiagoValverde. Determination of photoirradiated high polar benzoylureas in tomato by HPLC with luminol chemiluminescence detection[J]. Talanta,2008,76:815–823
- [4] A I Valenzuela, R Lorenzini, M J Redondo, et al. Matrix solid-phase dispersion microextraction and determination by high-performance liquid chromatography with UV detection of pesticide residues in citrus fruit[J]. Chromatography A,1999,839:101-107
- [5] George E Miliadis, Nicholas G Tsiropoulos, Pipina G Aplada–Sarlis. High–performance liquid chromatographic determination of benzoylurea insecticides residues in grapes and wine using liquid and solid–phase extraction[J]. Journal of Chromatography A,1999,835:113–120
- [6] 何红梅,吴俐勤,章虎,等.蔬菜中苯甲酰脲类药物残留的 测定方法研究[J].分析化学,2006,34(10):1379–1383
- [7] Ercheng Zhao, Lijun Han, Shuren Jiang. Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice[J]. Journal of Chromatography A, 2006,1114:269–273

食事传递

Food In

专家提示:热带水果不都上火

现在热带水果已经成为寻常老百姓家的"常客",不 过不少人存有误解,因为榴莲、荔枝、椰子是偏热的,吃 多了易上火,所以好像热带水果吃了都会上火。实际上, 有很多热带水果是偏寒的。人们要根据体质,选择最适合 自己的热带水果。

就常见的热带水果来说,偏热的有:椰子、荔枝、榴 莲、桂圆、杨梅、木瓜、红毛丹等;偏寒的有:香蕉、甘 蔗、火龙果、柚子、枇杷、芒果、杨桃、菠萝、山竹等; 而橄榄、柠檬、青梅则性味平和,不寒不热。当我们分清 了热带水果的寒热性之后,再选择热带水果心里就有底了。 如果您平时经常容易出现便秘、口腔溃疡、口干舌燥、咽 喉疼痛、舌质红、舌苔黄等"上火"的症状,就要少吃荔 枝,少喝椰汁。如果您平时经常表现为怕冷、怕风、小便 清冷、手脚发凉、舌质淡、舌苔白等症状,无论山竹、火龙 果等寒性水果的味道多么诱人,都要抵制住诱惑。需要注意 的是,大部分热带水果比较怕冷,不宜放在冰箱中冷藏,最 好放在避光、阴凉的地方,如果一定要放入冰箱,应置于温 度较高的蔬果槽中,保存的时间最好不要超过两天。